226-以后看NCBI,再也不用鼠标点点点了

刘小泽写于2021.1.11

有用的教程

rentrez包简介

NCBI是经常使用到的,如果想更快去获取数据,首先想到下载NCBi的数据库,但实际上这是不可行的。一方面是因为它经常更新,另一方面感受一下它的数据量大小。

截止到2020-11-11,NCBI就有:

  • 31.7 million papers in PubMed

  • 6.6 million full-text records available in PubMed Central

  • The NCBI Nucleotide Database (which includes GenBank) has data for 432 million different sequences

  • dbSNP describes 702 million different genetic variants

  • 1.86 million species in the NCBI taxonomy

  • 27 thousand disease-associated records in OMIM

因此,更有效率更有时效性的办法是:使用NCBI网站提供的API接口——Entrez Utilities (Eutils for short)。在R中,这个工具可以用rentrez,进行在线获取数据

0-rentrez使用起步

全部数据库类型

要想用好NCBI的API工具,起码要知道NCBI数据库都包含哪些类型数据吧

library(rentrez)
entrez_dbs()
##  [1] "pubmed"          "protein"         "nuccore"        
##  [4] "ipg"             "nucleotide"      "structure"      
##  [7] "sparcle"         "protfam"         "genome"         
## [10] "annotinfo"       "assembly"        "bioproject"     
## [13] "biosample"       "blastdbinfo"     "books"          
## [16] "cdd"             "clinvar"         "gap"            
## [19] "gapplus"         "grasp"           "dbvar"          
## [22] "gene"            "gds"             "geoprofiles"    
## [25] "homologene"      "medgen"          "mesh"           
## [28] "ncbisearch"      "nlmcatalog"      "omim"           
## [31] "orgtrack"        "pmc"             "popset"         
## [34] "proteinclusters" "pcassay"         "biosystems"     
## [37] "pccompound"      "pcsubstance"     "seqannot"       
## [40] "snp"             "sra"             "taxonomy"       
## [43] "biocollections"  "gtr"

知道了有这些数据库,然后这个包有3个十分常用的函数:

检索某个数据库

# 看基本信息
entrez_db_summary("pubmed")
##  DbName: pubmed
##  MenuName: PubMed
##  Description: PubMed bibliographic record
##  DbBuild: Build210110-1313.1
##  Count: 31990870
##  LastUpdate: 2021/01/10 17:45
# 看某个数据库的检索关键词
entrez_db_searchable("sra")
## Searchable fields for database 'sra'
##   ALL 	 All terms from all searchable fields 
##   UID 	 Unique number assigned to publication 
##   FILT 	 Limits the records 
##   ACCN 	 Accession number of sequence 
##   TITL 	 Words in definition line 
##   PROP 	 Classification by source qualifiers and molecule type 
##   WORD 	 Free text associated with record 
##   ORGN 	 Scientific and common names of organism, and all higher levels of taxonomy 
##   AUTH 	 Author(s) of publication 
##   PDAT 	 Date sequence added to GenBank 
##   MDAT 	 Date of last update 
##   GPRJ 	 BioProject 
##   BSPL 	 BioSample 
##   PLAT 	 Platform 
##   STRA 	 Strategy 
##   SRC 	 Source 
##   SEL 	 Selection 
##   LAY 	 Layout 
##   RLEN 	 Percent of aligned reads 
##   ACS 	 Access is public or controlled 
##   ALN 	 Percent of aligned reads 
##   MBS 	 Size in megabases

1-ID搜索(search)

基础搜索

搜索功能是使用频率最高的功能,我们可以设置database name (db)、search term (term) 进行简单搜索

r_search <- entrez_search(db="pubmed", term="single cell[All Fields]")
r_search
## Entrez search result with 49388 hits (object contains 20 IDs and no web_history object)
##  Search term (as translated):  single cell[All Fields]

发现hits比返回的ID数量多,这是因为默认参数retmax=20。当然,如果需要返回的数量非常多,就不需要设置这个参数了,而是通过设置entrez_fetch中的web_history(后面会提到)

another_r_search <- entrez_search(db="pubmed", term="R Language", retmax=40)
another_r_search
## Entrez search result with 14122 hits (object contains 40 IDs and no web_history object)
##  Search term (as translated):  R[All Fields] AND ("programming languages"[MeSH Te ...

返回的结果中ID最为重要,可以后面得到summary data或者与其他数据库联动

r_search$ids
##  [1] "33421851" "33421727" "33421713" "33421512" "33421413"
##  [6] "33420958" "33420907" "33420693" "33420657" "33420491"
## [11] "33420489" "33420488" "33420427" "33420425" "33420268"
## [16] "33420144" "33420075" "33419925" "33419885" "33419769"

设置搜索条件

搜索条件可以是query[SEARCH FIELD],或者AND, OR and NOT ,例如:

entrez_search(db="sra",
              term="Homo sapiens[ORGN]",
              retmax=0)
## Entrez search result with 2358175 hits (object contains 0 IDs and no web_history object)
##  Search term (as translated):  "Homo sapiens"[Organism]
# 加日期限定
entrez_search(db="sra",
              term="Homo sapiens[ORGN] AND 2019:2020[PDAT]",
              retmax=0)
## Entrez search result with 984743 hits (object contains 0 IDs and no web_history object)
##  Search term (as translated):  "Homo sapiens"[Organism] AND 2019[PDAT] : 2020[PDA ...
# 添加其他物种
entrez_search(db="sra",
              term="(Homo sapiens[ORGN] OR Mus musculus[ORGN]) AND 2019:2020[PDAT]",
              retmax=0)
## Entrez search result with 1664051 hits (object contains 0 IDs and no web_history object)
##  Search term (as translated):  ("Homo sapiens"[Organism] OR "Mus musculus"[Organi ...

其中的SEARCH FIELD依然是看entrez_db_searchable("sra")返回的结果

搜索文献

比如拿到一篇文章的DOI号,如何快速获得它的pubmed ID呢?

hox_paper <- entrez_search(db="pubmed", term="10.1038/nature08789[doi]")
hox_paper$ids
## [1] "20203609"

将搜索结果可视化

上面看到entrez_search()返回的结果包含了一些数量信息,我们可以提取进行作图。

比如粗略地看10年间单细胞转录组的发展速度

papers_by_year <- function(years, search_term){
    return(sapply(years, function(y) entrez_search(db="pubmed",term=search_term, mindate=y, maxdate=y, retmax=0)$count))
}
year <- 2010:2020
papers <- sapply(year, papers_by_year, search_term="single cell RNA", USE.NAMES=FALSE)

plot(year, papers, type='b', main="The Rise of Single Cell RNA")

另外看看多组学的发展

years <- 1990:2020
total_papers <- papers_by_year(years, "")
omics <- c("genomic", "epigenomic", "metagenomic", "proteomic", "transcriptomic", "pharmacogenomic", "connectomic" )
trend_data <- sapply(omics, function(t) papers_by_year(years, t))
trend_props <- trend_data/total_papers

library(reshape)
library(ggplot2)
trend_df <- melt(data.frame(years, trend_data), id.vars="years")
p <- ggplot(trend_df, aes(years, value, colour=variable))
p + geom_line(size=1) + scale_y_log10("number of papers")

NCBI另一个强大之处在于:各个数据库的关联性很强,基本上输入一个ID,得到的结果满满全是链接。为了展示这种强大,这里举一个例子:Amyloid Beta Precursor gene(NCBI 的gene ID是351),与阿尔茨海默病患者大脑中形成的斑块有关

关联所有可能的数据库

all_the_links <- entrez_link(dbfrom='gene', id=351, db='all')
names(all_the_links)
## [1] "links" "file"
all_the_links$links
## elink result with information from 57 databases:
##  [1] gene_bioconcepts              
##  [2] gene_biosystems               
##  [3] gene_biosystems_all           
##  [4] gene_clinvar                  
##  [5] gene_clinvar_specific         
##  [6] gene_dbvar                    
##  [7] gene_genome                   
##  [8] gene_gtr                      
##  [9] gene_homologene               
## [10] gene_medgen_diseases          
## [11] gene_pcassay_alltarget_list   
## [12] gene_pcassay_alltarget_summary
## [13] gene_pcassay_rnai             
## [14] gene_pcassay_rnai_active      
## [15] gene_pcassay_target           
## [16] gene_probe                    
## [17] gene_snp                      
## [18] gene_structure                
## [19] gene_bioproject               
## [20] gene_cdd                      
## [21] gene_gene_h3k4me3             
## [22] gene_gene_neighbors           
## [23] gene_genereviews              
## [24] gene_genome2                  
## [25] gene_geoprofiles              
## [26] gene_nuccore                  
## [27] gene_nuccore_mgc              
## [28] gene_nuccore_pos              
## [29] gene_nuccore_refseqgene       
## [30] gene_nuccore_refseqrna        
## [31] gene_nucest_clust             
## [32] gene_nucleotide               
## [33] gene_nucleotide_clust         
## [34] gene_nucleotide_mgc           
## [35] gene_nucleotide_mgc_url       
## [36] gene_nucleotide_pos           
## [37] gene_omim                     
## [38] gene_pcassay_proteintarget    
## [39] gene_pccompound               
## [40] gene_pcsubstance              
## [41] gene_pmc                      
## [42] gene_pmc_nucleotide           
## [43] gene_protein                  
## [44] gene_protein_refseq           
## [45] gene_pubmed                   
## [46] gene_pubmed_all               
## [47] gene_pubmed_citedinomim       
## [48] gene_pubmed_highlycited       
## [49] gene_pubmed_latest            
## [50] gene_pubmed_pmc_nucleotide    
## [51] gene_pubmed_reviews           
## [52] gene_pubmed_rif               
## [53] gene_snp_geneview             
## [54] gene_sparcle                  
## [55] gene_taxonomy                 
## [56] gene_unigene                  
## [57] gene_varview

结果的命名方式都是:[source_database]_[linked_database],因此想看到这个基因对应的PubMed ID,就可以:

length(all_the_links$links$gene_pmc)
## [1] 1241
all_the_links$links$gene_pmc[1:10]
##  [1] "7656556" "7510992" "7490758" "7378830" "7296003"
##  [6] "7291702" "7247290" "7113242" "6991300" "6956526"

或者想看这个基因在疾病中的作用,可以链接到clinVar中

clinVar是NCBI主办的与疾病相关的人类基因组变异数据库。它的强大在于整合了dbSNP、dbVar、Pubmed、OMIM等多个数据库在遗传变异和临床表型方面的数据信息,将变异、临床表型、实证数据以及功能注解与分析等四个方面的信息,通过专家评审,逐步形成一个标准的、可信的、稳定的遗传变异-临床表型相关的数据库

head(all_the_links$links$gene_clinvar)
## [1] "983157" "980228" "967074" "963922" "932452" "899123"
length(all_the_links$links$gene_clinvar)
## [1] 232

关联某个指定的数据库

还是以上面的351基因为例,如果我们目的是找与这个基因相关的转录本信息

Transcript sequences are stored in the nucleotide database (referred to as nuccore in EUtils)

nuc_links <- entrez_link(dbfrom='gene', id=351, db='nuccore')
nuc_links
## elink object with contents:
##  $links: IDs for linked records from NCBI
## 
nuc_links$links
## elink result with information from 5 databases:
## [1] gene_nuccore            gene_nuccore_mgc       
## [3] gene_nuccore_pos        gene_nuccore_refseqgene
## [5] gene_nuccore_refseqrna
nuc_links$links$gene_nuccore_refseqrna
##  [1] "1889693417" "1869284273" "1676441520" "1676319912"
##  [5] "1675178653" "1675118060" "1675113449" "1675055422"
##  [9] "1674986144" "1519241754" "1370481385" "324021746"

有了这些ID之后,就可以利用entrez_fetch() or entrez_summary() 去获得更多内容【之后提到】

关联外部链接

entrez_link()除了可以内部关联,还可以继续关联外部数据库。

比如:找某些paper的外部链接

paper_links <- entrez_link(dbfrom="pubmed", id=25500142, cmd="llinks")
paper_links
## elink object with contents:
##  $linkouts: links to external websites
paper_links$linkouts
## $ID_25500142
## $ID_25500142[[1]]
## Linkout from Elsevier Science 
##  $Url: https://linkinghub.elsevie ...
## 
## $ID_25500142[[2]]
## Linkout from Europe PubMed Central 
##  $Url: http://europepmc.org/abstr ...
## 
## $ID_25500142[[3]]
## Linkout from Ovid Technologies, Inc. 
##  $Url: http://ovidsp.ovid.com/ovi ...
## 
## $ID_25500142[[4]]
## Linkout from PubMed Central 
##  $Url: https://www.ncbi.nlm.nih.g ...
## 
## $ID_25500142[[5]]
## Linkout from MedlinePlus Health Information 
##  $Url: https://medlineplus.gov/al ...
## 
## $ID_25500142[[6]]
## Linkout from Mouse Genome Informatics (MGI) 
##  $Url: http://www.informatics.jax ...
linkout_urls(paper_links)
## $ID_25500142
## [1] "https://linkinghub.elsevier.com/retrieve/pii/S0014-4886(14)00393-8"     
## [2] "http://europepmc.org/abstract/MED/25500142"                             
## [3] "http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=linkout&SEARCH=25500142.ui"
## [4] "https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/25500142/"               
## [5] "https://medlineplus.gov/alzheimersdisease.html"                         
## [6] "http://www.informatics.jax.org/reference/25500142"

当然,更多更强大的功能可以继续看fulltext manual:https://books.ropensci.org/fulltext/

多个ID的关联

上面所看到的都是将1个ID关联到其他数据库,但如果想关联多个,也是可以的,并且可以分别返回结果。

all_links_sep  <- entrez_link(db="protein", dbfrom="gene", id=c("93100", "223646"), by_id=TRUE)
all_links_sep
## List of 2 elink objects,each containing
##   $links: IDs for linked records from NCBI
## 
lapply(all_links_sep, function(x) x$links$gene_protein)
## [[1]]
##  [1] "1387845369" "1387845338" "1370513171" "1370513169"
##  [5] "1034662000" "1034661998" "1034661996" "1034661994"
##  [9] "1034661992" "558472750"  "545685826"  "194394158" 
## [13] "166221824"  "154936864"  "122346659"  "119602646" 
## [17] "119602645"  "119602644"  "119602643"  "119602642" 
## [21] "37787309"   "37787307"   "37787305"   "33991172"  
## [25] "21619615"   "10834676"  
## 
## [[2]]
##  [1] "1720383952" "148697547"  "148697546"  "81899807"  
##  [5] "74215266"   "74186774"   "37787317"   "37589273"  
##  [9] "31982089"   "26339824"   "26329351"

3-ID概况(summary)

前面介绍的entrez_search()以及entrez_link(),最后都可以获取一些ID。但具体这些ID的信息是什么,还需要继续探索。Eutils API提供了两种方法:

  • entrez_summary() 返回比较精炼的结果(概况)
  • entrez_fetch()返回最全的结果

看看entrez_summary()如何使用吧

all_the_links <- entrez_link(dbfrom='gene', id=351, db='all')
all_the_links$links$gene_pmc[1:10]
##  [1] "7656556" "7510992" "7490758" "7378830" "7296003"
##  [6] "7291702" "7247290" "7113242" "6991300" "6956526"
# 就以其中一个6956526为例
taxize_summ <- entrez_summary(db="pubmed", id=6956526)
taxize_summ
## esummary result with 42 items:
##  [1] uid               pubdate           epubdate         
##  [4] source            authors           lastauthor       
##  [7] title             sorttitle         volume           
## [10] issue             pages             lang             
## [13] nlmuniqueid       issn              essn             
## [16] pubtype           recordstatus      pubstatus        
## [19] articleids        history           references       
## [22] attributes        pmcrefcount       fulljournalname  
## [25] elocationid       doctype           srccontriblist   
## [28] booktitle         medium            edition          
## [31] publisherlocation publishername     srcdate          
## [34] reportnumber      availablefromurl  locationlabel    
## [37] doccontriblist    docdate           bookname         
## [40] chapter           sortpubdate       sortfirstauthor

entrez_summary()返回的结果也是类似列表,利用$提取

# 将pubmed ID转为其他ID
taxize_summ$articleids
##   idtype idtypen                        value
## 1 pubmed       1                      6956526
## 2    doi       3 10.1016/0028-2243(82)90100-9
## 3    rid       8                      6956526
## 4    eid       8                      6956526
# 看被引用次数
taxize_summ$pmcrefcount
## [1] 2

可以接受多个ID

entrez_summary()一个向量,给你返回一个列表

vivax_search <- entrez_search(db = "pubmed",
                              term = "(scRNA[TITL] AND 2019:2020[PDAT] )")
multi_summs <- entrez_summary(db="pubmed", id=vivax_search$ids)

# 多个ID结果的提取
extract_from_esummary(multi_summs, "fulljournalname")                                                                                             
# 提取多列
date_and_cite <- extract_from_esummary(multi_summs, c("pubdate", "pmcrefcount",  "title"))
knitr::kable(tail(t(date_and_cite)), row.names=FALSE)
pubdatepmcrefcounttitle
2020Single-Cell Transcriptomics of Immune Cells: Cell Isolation and cDNA Library Generation for scRNA-Seq.
2020 Aug 2010Coupled scRNA-Seq and Intracellular Protein Activity Reveal an Immunosuppressive Role of TREM2 in Cancer.
2020 Dec 22A Distinct Transcriptional Program in Human CAR T Cells Bearing the 4-1BB Signaling Domain Revealed by scRNA-Seq.
2020 Jul 101Searching large-scale scRNA-seq databases via unbiased cell embedding with Cell BLAST.
2020 Jun 8Direct-seq: programmed gRNA scaffold for streamlined scRNA-seq in CRISPR screen.
2020 JunDetecting differential alternative splicing events in scRNA-seq with or without Unique Molecular Identifiers.

4-ID完整信息(fetch)

entrez_summary提供的简略信息有时还不能满足要求,想看更完整的信息就用到了entrez_fetch,需要结合参数rettype来指定想要的具体内容

具体rettype对应的关系看 :https://www.ncbi.nlm.nih.gov/books/NBK25499/table/chapter4.T._valid_values_of__retmode_and/

# 首先进行ID关联
gene_ids <- c(351, 11647)
linked_seq_ids <- entrez_link(dbfrom="gene", id=gene_ids, db="nuccore")
linked_transripts <- linked_seq_ids$links$gene_nuccore_refseqrna
head(linked_transripts)
## [1] "1907153913" "1889693417" "1869284273" "1676441520"
## [5] "1676319912" "1675178653"
# 然后拿到fasta序列
all_recs <- entrez_fetch(db="nuccore", id=linked_transripts, rettype="fasta")
class(all_recs)
## [1] "character"
nchar(all_recs)
## [1] 57671
# 可以不用完全打印出来,看看top lines
cat(strwrap(substr(all_recs, 1, 500)), sep="\n")
## >XM_006538498.4 PREDICTED: Mus musculus alkaline
## phosphatase, liver/bone/kidney (Alpl), transcript
## variant X2, mRNA
## AGGCCCTGTAACTCCTCCAAGAGAACACATGCCCAGTCCAGAGAAGAGCACAAGGTAGATCTTGTGACCA
## TCATCGGAACAAGCTGCAGTGGTAGCCTGGGTAGAAGCTGGCAGAGGGAGACCATCTGCAAACCAGGAAC
## GCTGTGAGAAGAGAAAGGACAGAGGTCCTGACATACTGTCACAGCCGCTCTGATGTATGGATCGGAACGT
## CAATTAACGTCAATTAACATCTGACGCTGCCCCCCCCCCCCTCTTCCCACCATCTGGGCTCCAGCGAGGG
## ACGAATCTCAGGGTACACCATGATCTCACCATTTTTAGTACTGGCCATCGGCACCTGCCTTACCAACTCT
## TTTGTGCCAGAGAAAGAGAGAGACCCCAG

还可以把这些序列输出

write(all_recs, file="my_transcripts.fasta")

返回XML格式数据

大部分的NCBI数据库都可以支持XML数据类型

Tt <- entrez_search(db="taxonomy", term="(Homo sapiens[ORGN]) AND Species[RANK]")
tax_rec <- entrez_fetch(db="taxonomy", id=Tt$ids, rettype="xml", parsed=TRUE)
class(tax_rec)
## [1] "XMLInternalDocument" "XMLAbstractDocument"
tax_list <- XML::xmlToList(tax_rec)
tax_list$Taxon$GeneticCode
## $GCId
## [1] "1"
## 
## $GCName
## [1] "Standard"
# 还可以更复杂
tt_lineage <- tax_rec["//LineageEx/Taxon/ScientificName"]
tt_lineage[1:4]
## [[1]]
## <ScientificName>cellular organisms</ScientificName> 
## 
## [[2]]
## <ScientificName>Eukaryota</ScientificName> 
## 
## [[3]]
## <ScientificName>Opisthokonta</ScientificName> 
## 
## [[4]]
## <ScientificName>Metazoa</ScientificName>
XML::xpathSApply(tax_rec, "//LineageEx/Taxon/ScientificName", XML::xmlValue)
##  [1] "cellular organisms"   "Eukaryota"           
##  [3] "Opisthokonta"         "Metazoa"             
##  [5] "Eumetazoa"            "Bilateria"           
##  [7] "Deuterostomia"        "Chordata"            
##  [9] "Craniata"             "Vertebrata"          
## [11] "Gnathostomata"        "Teleostomi"          
## [13] "Euteleostomi"         "Sarcopterygii"       
## [15] "Dipnotetrapodomorpha" "Tetrapoda"           
## [17] "Amniota"              "Mammalia"            
## [19] "Theria"               "Eutheria"            
## [21] "Boreoeutheria"        "Euarchontoglires"    
## [23] "Primates"             "Haplorrhini"         
## [25] "Simiiformes"          "Catarrhini"          
## [27] "Hominoidea"           "Hominidae"           
## [29] "Homininae"            "Homo"

5-练习

问题一:找到与某个基因有关联的其他基因

ZNF365基因为例(zinc finger protein 365 [ Homo sapiens (human) ])【https://www.ncbi.nlm.nih.gov/gene/22891】

看看用代码怎么寻找

gene_search <- entrez_search(db="gene", term="(ZNF365[GENE]) AND (Homo sapiens[ORGN])")
gene_search
## Entrez search result with 1 hits (object contains 1 IDs and no web_history object)
##  Search term (as translated):  ZNF365[GENE] AND "Homo sapiens"[Organism]
interactions_from_gene <- function(gene_id){
    xmlrec <- entrez_fetch(db="gene", id=gene_id, rettype="xml", parsed=TRUE)
    XML::xpathSApply(xmlrec,
                     "//Gene-commentary[Gene-commentary_heading[./text()='Interactions']]//Other-source[Other-source_src/Dbtag/Dbtag_db[./text()='GeneID']]//Other-source_anchor",
                     XML::xmlValue)                                         
}
interactions_from_gene(gene_search$ids)
## [1] "VDAC3" "MRE11" "PARP1" "APP"   "DISC1" "NDE1"

问题二:根据核酸记录ID,提取相关文献

library(rentrez)
library(XML)
library(dplyr)

# function to add column to df if not already included
fncols <- function(data, cname) {
  add <-cname[!cname%in%names(data)]
  if(length(add)!=0) data[add] <- NA
  data
}

# function to collate all publications associated with sequences
get_pub_info <- function(i){
  fetch2 <- entrez_fetch(db = "nucleotide", id = i, 
                       rettype = "gbc", retmode="xml", parsed = TRUE)
  xml_list2 <- xmlToList(fetch2)
  ref_list <- xml_list2$INSDSeq$INSDSeq_references
  # extract publication fields info
  authors <- unlist(ref_list$INSDReference$INSDReference_authors) %>% paste(collapse = "; ")
  title <- ref_list$INSDReference$INSDReference_title
  journal <- ref_list$INSDReference$INSDReference_journal
  year <-gsub(".*\\((.*)\\).*", "\\1", journal)
  pm_id <- ref_list$INSDReference$INSDReference_pubmed
  remark <- ref_list$INSDReference$INSDReference_remark
  # create data frame of information
  pub.data <- data.frame(i, authors, journal, year) 
  if(is.null(title)==FALSE) pub.data$title <- title
  if(is.null(pm_id)==FALSE) pub.data$pubmed_id <- pm_id
  if(is.null(remark)==FALSE) pub.data$remark <- remark
  pub.data <- fncols(pub.data, c("title", "pubmed_id", "remark"))
}

sequence_list <- c("AB687721.2", "AB600942.1", "AJ880277.1")
list_of_dfs <- lapply(sequence_list, get_pub_info) # run function on list of sequences
df_combine <- bind_rows(list_of_dfs)
colnames(df_combine)[1] <- "NCBI_idv"
df_combine <- tidyr::separate(df_combine, remark, c("text", "doi"), sep = "DOI:") # extract doi
df_combine <- tidyr::separate(df_combine, doi, c("doi", "text2"), sep = ";")
df_combine$remark <- paste(df_combine$text,df_combine$text2)
df_combine$text <- NULL
df_combine$text2 <- NULL

head(df_combine[, c("pubmed_id", "doi", "journal")])
##   pubmed_id                  doi
## 1  23135729 10.1128/JVI.02419-12
## 2   8709862                 <NA>
## 3  16525735                 <NA>
##                                    journal
## 1       J. Virol. 87 (2), 1105-1114 (2013)
## 2 Microbiol Immunol 40 (4), 271-275 (1996)
## 3         Virus Genes 32 (1), 49-57 (2006)
Yunze Liu
Yunze Liu
Bioinformatics Sharer

Co-founder of Bioinfoplanet(生信星球)

Next
Previous

Related